Weby shortcut
ProfOptimization2016

Publications

Atualizado em 17/11/18 22:41.

Preprints


 Publications 2018

1. De Oliveira, F. R.; Ferreira, O. P.; Silva, G. N. Newton’s method with feasible inexact projections for solving constrained generalized equations, Comput. Optim. and Appl.,   p. 1-19, 2018.  (pdf).

2. Ferreira, O. P.; Louzeiro, M. S.; Prudente, L. F. Iteration-complexity of the subgradient method on Riemannian manifolds with lower bounded curvature, Optimization, p. 1-17, 2018. (pdf).

3. Ferreira, O. P.; Németh, S. Z; Xiao, L. On the spherical quasi-convexity of quadratic functions Linear Algebra and  Appl., p. 1-24, 2018. (pdf).

4. Lucambio Pérez, L. R.; Prudente, L. F. Non-linear conjugate gradient methods for vector optimization, SIAM J. Optim., v. 28, p. 2690-2720, 2018.

5. Ferreira, O. P.; Németh, S. Z. On the spherical convexity of quadratic functions,  J. Global Optim.  p. 1-9, 2018. (pdf). .

6. Ferreira, O. P.; Silva, G. N. Local convergence analysis of Newton’s method for solving strongly regular generalized equations,  J. Math. Anal. Appl., v.458, n.1, p.481-496, 2018 (pdf).

7. Ferreira, O. P.; Silva, G. N. Inexact Newton's method to Nonlinear function with values in a cone, Applicable Analysis, v.1, p. 1-17, 2018. (pdf)

8. Ferreira, O. P.; Németh, S. Z. . How to project onto extended second order cones. J. Global Optim. , v. 70, p. 707-718, 2018.

9. Bento, G. C.; Ferreira, O. P.; Pereira, Y. R. L. Proximal Point Method for Vector Optimization on Hadamard Manifolds,Operations Research Letters, v.46, n.1, p.13–18, 2018,  (pdf).

10. Bento, G. C.; Ferreira, O. P.; Soubeyran, A; Sousa Junior, V. Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice Problems, J. Optim. Theory Appl.,  v. 177, p. 181-200, 2018. (pdf)

11. Bento, G. C.; Ferreira, O. P.; Sousa Junior, V. Proximal point method for a special class of nonconvex multiobjective optimization problem, Optim. Lett., v. 12, p. 311–320, 2018. (pdf).

12. Díaz Millán, R. Two algorithms for solving systems of operator inclusion problems. Numerical Algorithms. 78, n.4,   (2018),  1111-1127.

13. Bento, G. C.; Cruz Neto, J. X. ; Santos, P. S. M. ; Souza, S. S. . A weighting subgradient algorithm for multiobjective optimization. Optimization Letters, v. 12, p. 399-410, 2018.

14. Bento, G.C; Bouza Allende, G. ; Pereira, Y. R. L.. A Newton-Like Method for Variable Order Vector Optimization Problems. J. Optim. Theory Appl., , v. 177, p. 201-221, 2018.

15. Bento, G. C.; Cruz Neto, J. X. ; López, G. ; Soubeyran, A. ; Souza, J. C. O. . The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem. SIAM J. Optim.,, v. 28, p. 1104-1120, 2018.

16. Bento, G. C.; da Cruz Neto, J. X ; Meireles, L. V. . Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds. J. Optim. Theory Appl. , p. 1-16, 2018.

17. Adona, V.A.; Gonçalves, M. L. N.; Melo, J. G..  Iteration-complexity of a generalized alternating direction method of multipliers. J. Global Optim.. 2018 (pdf).

18. Gonçalves, M. L. N.; Oliveira, F.R..  An inexact Newton-Like gradient method for constrained nonlinear systems. Applied Numerical Mathematics, Vol 132(1), 22-34. 2018  (pdf).

19. Gonçalves, M. L. N. On the pointwise iteration-complexity of a dynamic regularized ADMM with over-relaxation stepsize.  Applied Mathematics and Computation, Vol 336 (1),  315-325, 2018 (pdf).

20. Gonçalves, M. L. N.; Marques Alves, M; Melo, J. G.. Pointwise and ergodic convergence rates of a variable metric proximal ADMMJ. Optim. Theory Appl Vol 177, No.1: pp 448-478, 2018. (pdf)


Publications 2017

1. Ferreira, O. P.;   Jean-Alexis, Célia; Piétrus, Alain . Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds, J. Optim. Theory Appl.,  v. 175, p. 624-651, 2017.   (pdf).

2. Ferreira, O. P.; Silva, G. N. Kantorovich's theorem on Newton's method for solving strongly regular generalized equation,  SIAM J. Optim., v. 27 (2), p. 910-926, 2017.(pdf).

3. Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework.  SIAM J. Optim., Vol. 27, No. 1 : pp. 379-407, 2017.

4. Bello Cruz, J. Y.; Ferreira, O. P.; Németh, S. Z.; Prudente, L. F., A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone. Linear Algebra and its Applications 513, 160-181, 2017.

5. Bento, Glaydston C. ; Ferreira, O. P. ; Melo, Jefferson G. . Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds. Journal of Optimization Theory and Applications,  v. 173, n.2, p. 548–562, 2017. (pdf).
6. Fernandes, Teles A. ; Ferreira, O. P.; Yuan, JinYun . On the Superlinear Convergence of Newton?s Method on Riemannian Manifolds. Journal of Optimization Theory and Applicationsv, v.173, n.3,  p. 828-843, 2017. (pdf).
7.Bittencourt, Tibério; ; Ferreira, O. P. . Kantorovich's theorem on Newton's method under majorant condition in Riemannian manifolds. Journal of Global Optimization, v. 68, n.2, p.387-411,  2017. (pdf).

Publications 2016

1. Barrios, J. G.; Bello Cruz, J. Y.; Ferreira, O. P.; Németh, S. Z. A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming. J. Comput. Appl. Math. 301 (2016), 91-100. 

2. Batista, Edvaldo E. A.; Bento, G. C.; Ferreira, O. P. ; Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds. J. Optim. Theory Appl. 170 (2016), no. 3, 916-931.

3. Bello Cruz, J. Y.; Ferreira, O. P.; Prudente, L. F. On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 65 (2016), no. 1, 93-108.

4. Bento, G. C.; Cruz Neto, J. X.; Lopes, J. O.; Soares, P. A., Jr.; Soubeyran, A. Generalized proximal distances for bilevel equilibrium problems. SIAM J. Optim. 26 (2016), no. 1, 810–830.
5. Bento, G. C. ; da Cruz Neto, J. X.; Oliveira, Paulo Roberto. A new approach to the proximal point method: convergence on general Riemannian manifolds. J. Optim. Theory Appl. 168 (2016), no. 3, 743–755.

6. Gonçalves, M. L. N. Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition. Numer. Algorithms 72 (2016), no. 2, 377–392.

7. Gonçalves, M. L. N.; Melo, Jefferson G. A Newton conditional gradient method for constrained nonlinear systems. Journal of Computational and Applied Mathematics,  311 (2016), 473-483.

8. Bento, G. C.; Cruz Neto, J. X.;  Soubeyran, A.; Sousa Júnior, Valdinês L. de. Dual Descent Methods as Tension Reduction Systems. J. Optim. Theory Appl. 171 (2016), no. 1, 209-227.

9. Bello Cruz, J. Y., Díaz Millán, R. A relaxed-projection splitting algorithm for variational inequalities in Hilbert space. Journal of Global Optimization 65 (2016), no.3,  597-614.

10. Bello Cruz, J. Y.; De Oliveira, W. . On Weak and Strong Convergence of the Projected Gradient Method for Convex Optimization in Real Hilbert Spaces. Numerical Functional Analysis and Optimization, v. 37, p. 129-144, 2016.

11. Bauschke, H. H. ; Bello Cruz, J.Y. ; Nghia, T. A. ; Phan, Hung M. ; Wang, Xianfu. Optimal Rates of Linear Convergence of Relaxed Alternating Projections and Generalized Douglas-Rachford Methods for Two Subspaces. Numerical Algorithms, v. 1, p. 1-44, 2016.

12.Van Ackooij, W. ; Bello Cruz, J.Y. ; Oliveira, W. . A strongly convergent proximal bundle method for convex minimization in Hilbert spaces. Optimization (Print), v. 65, p. 145-167, 2016.

13. Bello Cruz, J. Y.; Nghia, T. A. . On the convergence of the forward-backward splitting method with linesearches. Optimization Methods & Software (Print), v. 1, p. 1-30, 2016.


Publications 2015

1. Barrios, Jorge; Ferreira, O. P. ; Németh, Sándor Z. Projection onto simplicial cones by Picard's method. Linear Algebra Appl. 480 (2015), 27-43

2. Batista, E. E. A.; Bento, G. C.; Ferreira, O. P. An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theory Appl. 167 (2015), no. 2, 550-557.

3. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64 (2015), no. 2, 289-319. 

4. Bento, G. C.; Soubeyran, A. A generalized inexact proximal point method for nonsmooth functions that satisfies Kurdyka Lojasiewicz inequality. Set-Valued Var. Anal. 23 (2015), no. 3, 501–517.

5. Bento, G. C.; Soubeyran, A. Generalized inexact proximal algorithms: routine's formation with resistance to change, following worthwhile changes. J. Optim. Theory Appl. 166 (2015), no. 1, 172–187.

6. Birgin, E. G.; Martínez, J. M.; Prudente, L. F. Optimality properties of an augmented Lagrangian method on infeasible problems. Comput. Optim. Appl. 60 (2015), no. 3, 609–631.

7. Bittencourt, Tiberio; Ferreira, O. P.  Local convergence analysis of inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds. Appl. Math. Comput. 261 (2015), 28-38.

8. Burachik, Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. The exact penalty map for nonsmooth and nonconvex optimization. Optimization 64 (2015), no. 4, 717–738.

9. Ferreira, O. P. A robust semi-local convergence analysis of Newton's method for cone inclusion problems in Banach spaces under affine invariant majorant condition. J. Comput. Appl. Math. 279 (2015), 318-335. 

10. Ferreira, O. P.; Németh, S. Z. Projection onto simplicial cones by a semi-smooth Newton method. Optim. Lett. 9 (2015), no. 4, 731-741.

11. Gonçalves, M. L. N.; Melo, J. G.; Prudente, L. F. Augmented Lagrangian methods for nonlinear programming with possible infeasibility. J. Global Optim. 63 (2015), no. 2, 297–318.

12. Gonçalves, M. L. N.; Oliveira, P. R. Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition. Optimization 64 (2015), no. 3, 577–594.

13. Bello Cruz, J. Y., Díaz Millán, R. A variant of Forward-Backward splitting method for the sum of two monotone operators with a new search strategy. Optimization 64 (2015),  No. 7, 1471-1486.

14. Bello Cruz, J. Y.; Iusem, A. N. . Full convergence of an approximate projection method for nonsmooth variational inequalities. Mathematics and Computers in Simulation (Print), v. 114, p. 2-13, 2015.

15. Bello Cruz, J.Y.; Díaz Millán, R. . A variant of forward-backward splitting method for the sum of two monotone operators with a new search strategy. Optimization (Print), v. 1, p. 1-16, 2015.


Publications 2014
1. Bello Cruz, J. Y.; Bouza Allende, G.; Lucambio Pérez, L. R. Subgradient algorithms for solving variable inequalities. Appl. Math. Comput. 247 (2014), 1052-1063.

2. Ferreira, O. P.; Iusem, A. N.; Németh, S. Z. Concepts and techniques of optimization on the sphere. TOP 22 (2014), no. 3, 1148-1170.

3. Bello Cruz, J. Y.; Lucambio Pérez, L. R. A subgradient-like algorithm for solving vector convex inequalities. J. Optim. Theory Appl. 162 (2014), no. 2, 392-404.

4. Bento, G. C.; Cruz Neto, J. X.; Soubeyran, A. A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22 (2014), no. 3, 557–573.

5. Bento, G. C.; Cruz Neto, J. X. Finite termination of the proximal point method for convex functions on Hadamard manifolds. Optimization 63 (2014), no. 9, 1281–1288.

6. Bento, G. C.; Cruz Neto, J. X.; Oliveira, P. R.; Soubeyran, A. The self regulation problem as an inexact steepest descent method for multicriteria optimization. European J. Oper. Res. 235 (2014), no. 3, 494–502.

7. Bello  Cruz, J. Y., Díaz Millán, R. A direct splitting method for nonsmooth variational inequalities. Journal of Optimization Theory and Application 161 (2014), no. 728-737.

8. Bello Cruz, J. Y.; De Oliveira, W. . Level bundle-like algorithms for convex optimization. Journal of Global Optimization (Dordrecht. Online), v. 59, p. 787-809, 2014.

9. Bauschke, HEINZ H. ; Bello Cruz, J.Y. ; Nghia, TranT.A. ; Phan, Hung M. ; Wang, Xianfu. The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. Journal of Approximation Theory v. 185, p. 63-79, 2014.

10. Bello Cruz, J. Y.; Bouza Allende, G. . A Steepest Descent-Like Method for Variable Order Vector Optimization Problems. Journal of Optimization Theory and Applications, v. 162, p. 371-391, 2014.


Publications 2013
1. Ferreira, O. P.; Iusem, A. N.; Németh, S. Z. Projections onto convex sets on the sphere. J. Global Optim. 57 (2013), no. 3, 663-676.

2. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition. SIAM J. Optim. 23 (2013), no. 3, 1757-1783.

3. Da Cruz Neto, J. X.; Da Silva, G. J. P.; Ferreira, O. P.; Lopes, J. O. A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54 (2013), no. 3, 461-472.

4. Birgin, E. G.; Martínez, J. M.; Prudente, L. F. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming. J. Global Optim. 58 (2014), no. 2, 207–242.

5. Marques Alves, M.; Melo, J. G. Strong convergence in Hilbert spaces via Γ-duality. J. Optim. Theory Appl. 158 (2013), no. 2, 343–362.

6. Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. An inexact modified subgradient algorithm for primal-dual problems via augmented Lagrangians. J. Optim. Theory Appl. 157 (2013), no. 1, 108–131.

7. Gonçalves, M. L. N. Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition. Comput. Math. Appl. 66 (2013), no. 4, 490–499.

8. Bento, G. C.; Cruz Neto, J. X. A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159 (2013), no. 1, 125–137.

9. Bento, G. C.; da Cruz Neto, J. X.; Santos, P. S. M. An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159 (2013), no. 1, 108–124.

10. Bello Cruz, J.Y.. A Subgradient Method for Vector Optimization Problems. SIAM Journal on Optimization (Print), v. 23, p. 2169-2182, 2013.

11.Bello Cruz, J. Y.; Santos, P. S. M. ; Scheimberg, S. . A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems. Journal of Optimization Theory and Applications, v. 159, p. 562-575, 2013.


Publications 2012
1. Ferreira, O. P. ; Silva, Roberto C. M. Local convergence of Newton's method under a majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32 (2012), no. 4, 1696-1713.

2. Ferreira, O. P.; Németh, S. Z. Generalized isotone projection cones. Optimization 61 (2012), no. 9, 1087-1098.

3. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154 (2012), no. 1, 88-107.

4. Ferreira, O. P.; Svaiter, B. F. A robust Kantorovich's theorem on the inexact Newton method with relative residual error tolerance. J. Complexity 28 (2012), no. 3, 346-363.

5. Ferreira, O. P.; Németh, S. Z. Generalized projections onto convex sets. J. Global Optim. 52 (2012), no. 4, 831-842.

6. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of inexact Gauss-Newton like methods under majorant condition. J. Comput. Appl. Math. 236 (2012), no. 9, 2487-2498.

7. Martínez, J. M.; Prudente, L. F. Handling infeasibility in a large-scale nonlinear optimization algorithm. Numer. Algorithms 60 (2012), no. 2, 263–277.

8. Bento, Glaydston C.; Melo, Jefferson G. Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152 (2012), no. 3, 773–785.

9.Bello Cruz, J. Y.; Iusem, A. N. . An explicit algorithm for monotone variational inequalities. Optimization, v. 61, p. 855-871, 2012.


Publications 2011
1. Bello Cruz, J. Y.; Lucambio Pérez, L. R.; Melo, J. G. Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74 (2011), no. 16, 5268-5273.

2. Ferreira, O. P.; Gonçalves, M. L. N. Local convergence analysis of inexact Newton-like methods under majorant condition. Comput. Optim. Appl. 48 (2011), no. 1, 1-21.

3. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of the Gauss-Newton method under a majorant condition. J. Complexity 27 (2011), no. 1, 111-125.

4. Ferreira, O. P. Local convergence of Newton's method under majorant condition. J. Comput. Appl. Math. 235 (2011), no. 5, 1515-1522.

5.Bello Cruz, J.Y.; Pijeira, H. ; Márquez, C. ; Urbina, W. . Sobolev-Gegenbauer-type orthogonality and a hydrodynamical interpretation. Integral Transforms and Special Functions, v. 22, p. 711-722, 2011.


6.Bello Cruz, J.Y.; Iusem, A. N. . A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces. Numerical Functional Analysis and Optimization, v. 32, p. 1009-1018, 2011.


Publications 2010
1.  Bello Cruz, J. Y.; Lucambio Pérez, L. R. Convergence of a projected gradient method variant for quasiconvex objectives. Nonlinear Anal. 73 (2010), no. 9, 2917-2922.

2. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73 (2010), no. 2, 564-572.

3. Burachik, R. S.; Iusem, A. N.; Melo, J. G. Duality and exact penalization for general augmented Lagrangians. J. Optim. Theory Appl. 147 (2010), no. 1, 125–140.

4. Burachik, Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. A primal dual modified subgradient algorithm with sharp Lagrangian. J. Global Optim. 46 (2010), no. 3, 347–361.

5. Bello Cruz, J.Y.; Pijeira, H. ; Urbina, W. . On polar Legendre polynomials. The Rocky Mountain Journal of Mathematics, v. 40, p. 2025-2036, 2010.

6. Bello Cruz, J. Y.; Iusem, A. N. . Convergence of direct methods for paramonotone variational inequalities. Computational Optimization and Applications, v. 46, p. 247-263, 2010


Publications 2009
1. Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. On the convergence of the entropy-exponential penalty trajectories and generalized proximal point methods in semidefinite optimization. J. Global Optim. 45 (2009), no. 2, 211-227.

2. Ferreira, O. P.  Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle. IMA J. Numer. Anal. 29 (2009), no. 3, 746-759.

3. Ferreira, O. P.; Svaiter, B. F. Kantorovich's majorants principle for Newton's method. Comput. Optim. Appl. 42 (2009), no. 2, 213-229.

4. Bello Cruz, J.Y.; Iusem, A. N. . A Strongly Convergent Direct Method for Monotone Variational Inequalities in Hilbert Spaces. Numerical Functional Analysis and Optimization, v. 30, p. 23-36, 2009.


Publications 2008
1. da Cruz Neto, J. X.; Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. Central paths in semidefinite programming, generalized proximal-point method and Cauchy trajectories in Riemannian manifolds. J. Optim. Theory Appl. 139 (2008), no. 2, 227-242.

 2. Ferreira, O. P. Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68 (2008), no. 6, 1517-1528.


Publications 2007
1. da Cruz Neto, J. X.; Ferreira, O. P.; Iusem, A. N.; Monteiro, R. D. C. Dual convergence of the proximal point method with Bregman distances for linear programming. Optim. Methods Softw. 22 (2007), no. 2, 339-360.


Publications 2006
1. da Cruz Neto, J. X.; Ferreira, O. P.; Pérez, L. R. Lucambio; Németh, S. Z. Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35 (2006), no. 1, 53-69.

2. Ferreira, O. P.  Convexity with respect to a differential equation. J. Math. Anal. Appl. 315 (2006), no. 2, 626-641.

3. Ferreira, O. P.  Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313 (2006), no. 2, 587-597.


Publications 2005
1. da Cruz Neto, João X.; Ferreira, O. P. ; Monteiro, Renato D. C. Asymptotic behavior of the central path for a special class of degenerate SDP problems. Math. Program. 103 (2005), no. 3, Ser. A, 487-514.

2. Ferreira, O. P.; Pérez, L. R. Lucambio; Németh, S. Z. Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31 (2005), no. 1, 133-151.


Publications 2002
1. Ferreira, O. P.; Oliveira, P. R. Proximal point algorithm on Riemannian manifolds. Optimization 51 (2002), no. 2, 257-270.

2. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Pérez, L. R. Contributions to the study of monotone vector fields. Acta Math. Hungar. 94 (2002), no. 4, 307-320.

3. Ferreira, O. P.; Svaiter, B. F. Kantorovich's theorem on Newton's method in Riemannian manifolds. J. Complexity 18 (2002), no. 1, 304-329.


Publications 2000
1. da Cruz Neto, J. X.; Ferreira, O. P. Q-quadratic convergence on Newton's method from data at one point. Int. J. Appl. Math. 3 (2000), no. 4, 441-447.

2. Iusem, Alfredo N.; Pérez, Luis R. Lucambio An extragradient-type algorithm for non-smooth variational inequalities. Optimization 48 (2000), no. 3, 309-332.

3. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Pérez, L. R. Monotone point-to-set vector fields. Dedicated to Professor Constantin Udri-te. Balkan J. Geom. Appl. 5 (2000), no. 1, 69-79.


Publications 1999
1. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Perez, L. R. A proximal regularization of the steepest descent method in Riemannian manifold. Balkan J. Geom. Appl. 4 (1999), no. 2, 1-8.


Publications 1998
1. Ferreira, O. P.; Oliveira, P. R. Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97 (1998), no. 1, 93-104.

Listar Todas Voltar