Weby shortcut
ProfOptimization2016

Publications

Atualizado em 03/03/18 11:42.

Preprints


 Publications 2018

1. Ferreira, O. P.; Silva, G. N. Local convergence analysis of Newton’s method for solving strongly regular generalized equations J. Math. Anal. Appl., v.458, n.1, p.481-496, 2018 (pdf).

2.  Ferreira, O. P.; Silva, G. N. Inexact Newton's method to Nonlinear function with values in a cone, Applicable Analysis, p. 1-17, 2018. (pdf)

3. Bento, G. C.; Ferreira, O. P.; Pereira, Y. R. L. Proximal Point Method for Vector Optimization on Hadamard Manifolds,Operations Research Letters, v.46, n.1, p.13–18, 2018,  (pdf).

4. Bento, G. C.; Ferreira, O. P.; Soubeyran, A; Sousa Junior, V. Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice Problems, J. Optim. Theory Appl., p. 1-20, 2018. (pdf)

5. Bento, G. C.; Ferreira, O. P.; Sousa Junior, V. Proximal point method for a special class of nonconvex multiobjective optimization problem, Optim. Lett., v. 12, p. 311–320, 2018. (pdf). 


Publications 2017

1. Ferreira, O. P.;   Jean-Alexis, Célia; Piétrus, Alain . Metrically regular vector field and iterative processes for generalized equations in Hadamard manifolds, J. Optim. Theory Appl.,  2017,  (pdf).

2. Ferreira, O. P.; Németh, S. Z.. How to project onto extended second order cones, J. Global Optim.,  2017,  (pdf).

3. Ferreira, O. P.; Silva, G. N. Kantorovich's theorem on Newton's method for solving strongly regular generalized equation,  SIAM J. Optim., v. 27 (2), p. 910-926, 2017.(pdf).

4.  Gonçalves, M. L. N.; Melo, J. G.; Monteiro, R. D. C.. Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework.  SIAM Journal on Optimization, Vol. 27, No. 1 : pp. 379-407, 2017.

5. Bello Cruz, J. Y.; Ferreira, O. P.; Németh, S. Z.; Prudente, L. F., A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone. Linear Algebra and its Applications 513, 160-181, 2017.

6. Bento, Glaydston C. ; Ferreira, O. P. ; Melo, Jefferson G. . Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds. Journal of Optimization Theory and Applications,  v. 173, n.2, p. 548–562, 2017. (pdf).
7. Fernandes, Teles A. ; Ferreira, O. P.; Yuan, JinYun . On the Superlinear Convergence of Newton?s Method on Riemannian Manifolds. Journal of Optimization Theory and Applicationsv, v.173, n.3,  p. 828-843, 2017. (pdf).
8.Bittencourt, Tibério; ; Ferreira, O. P. . Kantorovich's theorem on Newton's method under majorant condition in Riemannian manifolds. Journal of Global Optimization, v. 68, n.2, p.387-411,  2017. (pdf).
9.Bento, Glaydston C.; Cruz Neto, J. X.; Santos, P. S. M. ; Souza, S. S. . A weighting subgradient algorithm for multiobjective optimization. Optimization Letters, p. 1-12, 2017. 

Publications 2016

1. Barrios, J. G.; Bello Cruz, J. Y.; Ferreira, O. P.; Németh, S. Z. A semi-smooth Newton method for a special piecewise linear system with application to positively constrained convex quadratic programming. J. Comput. Appl. Math. 301 (2016), 91-100. 

2. Batista, Edvaldo E. A.; Bento, G. C.; Ferreira, O. P. ; Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds. J. Optim. Theory Appl. 170 (2016), no. 3, 916-931.

3. Bello Cruz, J. Y.; Ferreira, O. P.; Prudente, L. F. On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 65 (2016), no. 1, 93-108.

4. Bento, G. C.; Cruz Neto, J. X.; Lopes, J. O.; Soares, P. A., Jr.; Soubeyran, A. Generalized proximal distances for bilevel equilibrium problems. SIAM J. Optim. 26 (2016), no. 1, 810–830.
5. Bento, G. C. ; da Cruz Neto, J. X.; Oliveira, Paulo Roberto. A new approach to the proximal point method: convergence on general Riemannian manifolds. J. Optim. Theory Appl. 168 (2016), no. 3, 743–755.

6. Gonçalves, M. L. N. Inexact Gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition. Numer. Algorithms 72 (2016), no. 2, 377–392.

7. Gonçalves, M. L. N.; Melo, Jefferson G. A Newton conditional gradient method for constrained nonlinear systems. Journal of Computational and Applied Mathematics,  311 (2016), 473-483.

8. Bento, G. C.; Cruz Neto, J. X.;  Soubeyran, A.; Sousa Júnior, Valdinês L. de. Dual Descent Methods as Tension Reduction Systems. J. Optim. Theory Appl. 171 (2016), no. 1, 209-227.


Publications 2015

1. Barrios, Jorge; Ferreira, O. P. ; Németh, Sándor Z. Projection onto simplicial cones by Picard's method. Linear Algebra Appl. 480 (2015), 27-43

2. Batista, E. E. A.; Bento, G. C.; Ferreira, O. P. An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theory Appl. 167 (2015), no. 2, 550-557.

3. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64 (2015), no. 2, 289-319. 

4. Bento, G. C.; Soubeyran, A. A generalized inexact proximal point method for nonsmooth functions that satisfies Kurdyka Lojasiewicz inequality. Set-Valued Var. Anal. 23 (2015), no. 3, 501–517.

5. Bento, G. C.; Soubeyran, A. Generalized inexact proximal algorithms: routine's formation with resistance to change, following worthwhile changes. J. Optim. Theory Appl. 166 (2015), no. 1, 172–187.

6. Birgin, E. G.; Martínez, J. M.; Prudente, L. F. Optimality properties of an augmented Lagrangian method on infeasible problems. Comput. Optim. Appl. 60 (2015), no. 3, 609–631.

7. Bittencourt, Tiberio; Ferreira, O. P.  Local convergence analysis of inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds. Appl. Math. Comput. 261 (2015), 28-38.

8. Burachik, Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. The exact penalty map for nonsmooth and nonconvex optimization. Optimization 64 (2015), no. 4, 717–738.


9. Ferreira, O. P. A robust semi-local convergence analysis of Newton's method for cone inclusion problems in Banach spaces under affine invariant majorant condition. J. Comput. Appl. Math. 279 (2015), 318-335. 

10. Ferreira, O. P.; Németh, S. Z. Projection onto simplicial cones by a semi-smooth Newton method. Optim. Lett. 9 (2015), no. 4, 731-741.

11. Gonçalves, M. L. N.; Melo, J. G.; Prudente, L. F. Augmented Lagrangian methods for nonlinear programming with possible infeasibility. J. Global Optim. 63 (2015), no. 2, 297–318.

12. Gonçalves, M. L. N.; Oliveira, P. R. Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition. Optimization 64 (2015), no. 3, 577–594.


Publications 2014
1. Bello Cruz, J. Y.; Bouza Allende, G.; Lucambio Pérez, L. R. Subgradient algorithms for solving variable inequalities. Appl. Math. Comput. 247 (2014), 1052-1063.

2. Ferreira, O. P.; Iusem, A. N.; Németh, S. Z. Concepts and techniques of optimization on the sphere. TOP 22 (2014), no. 3, 1148-1170.

3. Bello Cruz, J. Y.; Lucambio Pérez, L. R. A subgradient-like algorithm for solving vector convex inequalities. J. Optim. Theory Appl. 162 (2014), no. 2, 392-404.

4. Bento, G. C.; Cruz Neto, J. X.; Soubeyran, A. A proximal point-type method for multicriteria optimization. Set-Valued Var. Anal. 22 (2014), no. 3, 557–573.

5. Bento, G. C.; Cruz Neto, J. X. Finite termination of the proximal point method for convex functions on Hadamard manifolds. Optimization 63 (2014), no. 9, 1281–1288.

6. Bento, G. C.; Cruz Neto, J. X.; Oliveira, P. R.; Soubeyran, A. The self regulation problem as an inexact steepest descent method for multicriteria optimization. European J. Oper. Res. 235 (2014), no. 3, 494–502.


Publications 2013
1. Ferreira, O. P.; Iusem, A. N.; Németh, S. Z. Projections onto convex sets on the sphere. J. Global Optim. 57 (2013), no. 3, 663-676.

2. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Convergence of the Gauss-Newton method for convex composite optimization under a majorant condition. SIAM J. Optim. 23 (2013), no. 3, 1757-1783.

3. Da Cruz Neto, J. X.; Da Silva, G. J. P.; Ferreira, O. P.; Lopes, J. O. A subgradient method for multiobjective optimization. Comput. Optim. Appl. 54 (2013), no. 3, 461-472.

4. Birgin, E. G.; Martínez, J. M.; Prudente, L. F. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming. J. Global Optim. 58 (2014), no. 2, 207–242.

5. Marques Alves, M.; Melo, J. G. Strong convergence in Hilbert spaces via Γ-duality. J. Optim. Theory Appl. 158 (2013), no. 2, 343–362.

6. Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. An inexact modified subgradient algorithm for primal-dual problems via augmented Lagrangians. J. Optim. Theory Appl. 157 (2013), no. 1, 108–131.

7. Gonçalves, M. L. N. Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition. Comput. Math. Appl. 66 (2013), no. 4, 490–499.

8. Bento, G. C.; Cruz Neto, J. X. A subgradient method for multiobjective optimization on Riemannian manifolds. J. Optim. Theory Appl. 159 (2013), no. 1, 125–137.

9. Bento, G. C.; da Cruz Neto, J. X.; Santos, P. S. M. An inexact steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 159 (2013), no. 1, 108–124.


Publications 2012
1. Ferreira, O. P. ; Silva, Roberto C. M. Local convergence of Newton's method under a majorant condition in Riemannian manifolds. IMA J. Numer. Anal. 32 (2012), no. 4, 1696-1713.

2. Ferreira, O. P.; Németh, S. Z. Generalized isotone projection cones. Optimization 61 (2012), no. 9, 1087-1098.

3. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Unconstrained steepest descent method for multicriteria optimization on Riemannian manifolds. J. Optim. Theory Appl. 154 (2012), no. 1, 88-107.

4. Ferreira, O. P.; Svaiter, B. F. A robust Kantorovich's theorem on the inexact Newton method with relative residual error tolerance. J. Complexity 28 (2012), no. 3, 346-363.

5. Ferreira, O. P.; Németh, S. Z. Generalized projections onto convex sets. J. Global Optim. 52 (2012), no. 4, 831-842.

6. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of inexact Gauss-Newton like methods under majorant condition. J. Comput. Appl. Math. 236 (2012), no. 9, 2487-2498.

7. Martínez, J. M.; Prudente, L. F. Handling infeasibility in a large-scale nonlinear optimization algorithm. Numer. Algorithms 60 (2012), no. 2, 263–277.

8. Bento, Glaydston C.; Melo, Jefferson G. Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152 (2012), no. 3, 773–785.


Publications 2011
1. Bello Cruz, J. Y.; Lucambio Pérez, L. R.; Melo, J. G. Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74 (2011), no. 16, 5268-5273.

2. Ferreira, O. P.; Gonçalves, M. L. N. Local convergence analysis of inexact Newton-like methods under majorant condition. Comput. Optim. Appl. 48 (2011), no. 1, 1-21.

3. Ferreira, O. P.; Gonçalves, M. L. N.; Oliveira, P. R. Local convergence analysis of the Gauss-Newton method under a majorant condition. J. Complexity 27 (2011), no. 1, 111-125.

4. Ferreira, O. P. Local convergence of Newton's method under majorant condition. J. Comput. Appl. Math. 235 (2011), no. 5, 1515-1522.


Publications 2010
1.  Bello Cruz, J. Y.; Lucambio Pérez, L. R. Convergence of a projected gradient method variant for quasiconvex objectives. Nonlinear Anal. 73 (2010), no. 9, 2917-2922.

2. Bento, G. C.; Ferreira, O. P.; Oliveira, P. R. Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds. Nonlinear Anal. 73 (2010), no. 2, 564-572.

3. Burachik, R. S.; Iusem, A. N.; Melo, J. G. Duality and exact penalization for general augmented Lagrangians. J. Optim. Theory Appl. 147 (2010), no. 1, 125–140.

4. Burachik, Regina S.; Iusem, Alfredo N.; Melo, Jefferson G. A primal dual modified subgradient algorithm with sharp Lagrangian. J. Global Optim. 46 (2010), no. 3, 347–361.


Publications 2009
1. Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. On the convergence of the entropy-exponential penalty trajectories and generalized proximal point methods in semidefinite optimization. J. Global Optim. 45 (2009), no. 2, 211-227.

2. Ferreira, O. P.  Local convergence of Newton's method in Banach space from the viewpoint of the majorant principle. IMA J. Numer. Anal. 29 (2009), no. 3, 746-759.

3. Ferreira, O. P.; Svaiter, B. F. Kantorovich's majorants principle for Newton's method. Comput. Optim. Appl. 42 (2009), no. 2, 213-229.


Publications 2008
1. da Cruz Neto, J. X.; Ferreira, O. P.; Oliveira, P. R.; Silva, R. C. M. Central paths in semidefinite programming, generalized proximal-point method and Cauchy trajectories in Riemannian manifolds. J. Optim. Theory Appl. 139 (2008), no. 2, 227-242.

 2. Ferreira, O. P. Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds. Nonlinear Anal. 68 (2008), no. 6, 1517-1528.


Publications 2007
1. da Cruz Neto, J. X.; Ferreira, O. P.; Iusem, A. N.; Monteiro, R. D. C. Dual convergence of the proximal point method with Bregman distances for linear programming. Optim. Methods Softw. 22 (2007), no. 2, 339-360.


Publications 2006
1. da Cruz Neto, J. X.; Ferreira, O. P.; Pérez, L. R. Lucambio; Németh, S. Z. Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35 (2006), no. 1, 53-69.

2. Ferreira, O. P.  Convexity with respect to a differential equation. J. Math. Anal. Appl. 315 (2006), no. 2, 626-641.

3. Ferreira, O. P.  Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds. J. Math. Anal. Appl. 313 (2006), no. 2, 587-597.


Publications 2005
1. da Cruz Neto, João X.; Ferreira, O. P. ; Monteiro, Renato D. C. Asymptotic behavior of the central path for a special class of degenerate SDP problems. Math. Program. 103 (2005), no. 3, Ser. A, 487-514.

2. Ferreira, O. P.; Pérez, L. R. Lucambio; Németh, S. Z. Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31 (2005), no. 1, 133-151.


Publications 2002
1. Ferreira, O. P.; Oliveira, P. R. Proximal point algorithm on Riemannian manifolds. Optimization 51 (2002), no. 2, 257-270.

2. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Pérez, L. R. Contributions to the study of monotone vector fields. Acta Math. Hungar. 94 (2002), no. 4, 307-320.

3. Ferreira, O. P.; Svaiter, B. F. Kantorovich's theorem on Newton's method in Riemannian manifolds. J. Complexity 18 (2002), no. 1, 304-329.


Publications 2000
1. da Cruz Neto, J. X.; Ferreira, O. P. Q-quadratic convergence on Newton's method from data at one point. Int. J. Appl. Math. 3 (2000), no. 4, 441-447.

2. Iusem, Alfredo N.; Pérez, Luis R. Lucambio An extragradient-type algorithm for non-smooth variational inequalities. Optimization 48 (2000), no. 3, 309-332.

3. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Pérez, L. R. Monotone point-to-set vector fields. Dedicated to Professor Constantin Udri-te. Balkan J. Geom. Appl. 5 (2000), no. 1, 69-79.


Publications 1999
1. da Cruz Neto, J. X.; Ferreira, O. P.; Lucambio Perez, L. R. A proximal regularization of the steepest descent method in Riemannian manifold. Balkan J. Geom. Appl. 4 (1999), no. 2, 1-8.


Publications 1998
1. Ferreira, O. P.; Oliveira, P. R. Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97 (1998), no. 1, 93-104.

Listar Todas Voltar